

Bioorganic & Medicinal Chemistry Letters 17 (2007) 5370-5373

Bioorganic & Medicinal Chemistry Letters

Toward novel HIV-1 integrase binding inhibitors: Molecular modeling, synthesis, and biological studies

Claudia Mugnaini, Suvi Rajamaki, Cristina Tintori, Federico Corelli, Silvio Massa, Myriam Witvrouw, Zeger Debyser, Veljko Veljkovich and Maurizio Botta,

^aDipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. De Gasperi 2, I-53100 Siena, Italy ^bCenter for Multidisciplinary Research and Engineering, Institute of Nuclear Sciences VINCA, PO Box 522, 11001 Belgrade, Serbia and Montenegro

^cMolecular Medicine, Katholieke Universiteit Leuven and IRC KULAK, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium

Received 4 July 2007; revised 1 August 2007; accepted 2 August 2007 Available online 11 August 2007

Abstract—The identification of a novel hit compound as integrase binding inhibitor has been accomplished by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with one of the compounds showing an IC₅₀ = 12 μ M. © 2007 Elsevier Ltd. All rights reserved.

Currently, there are four FDA-approved classes of drugs to combat HIV infection: nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors, and one fusion inhibitor.^{1,2} Application of these agents in combating HIV has led to remarkable success in inhibition of HIV-1 replication, reduction of viral load, and decline in morbidity and mortality. However, their adverse effects together with the emergence of resistant HIV mutants^{3,4} have highlighted the need to develop novel antiviral agents with a different mechanism of action. Accordingly, significant effort is presently devoted to the development of inhibitors of integrase, the third viral enzyme, 5-7 which is responsible for the integration of the viral DNA into the chromosomes of the host cell, a process that occurs in two temporally and spatially separated reactions known as 3'-processing and strand transfer.

Although a large number of compounds have been reported to inhibit HIV-1 IN in biochemical assays, $^{8-11}$ no drug active against this enzyme has been approved by the FDA so far. The β -diketo acids (DKAs), acting as specific inhibitors of the strand-transfer step (INS-TIs), provided the first proof of principle for HIV-1

IN inhibitors as antiviral agents⁸ followed by a series of metabolically stable compounds characterized by the incorporation of the diketo acid moiety into more complex heterocyclic frames. Among them, S-1360 and

Chart 1. Known integrase inhibitors and our hit compound 1.

Keywords: HIV-1; Integrase inhibitors.

^{*}Corresponding author. E-mail: botta@unisi.it

L-870,810 (Chart 1) represent the first generation of IN inhibitors that have entered clinical studies. 12-14

Differently to DKAs and naphthyridine analogs, styrylquinolines (SQs)^{15,16} and pyranodipirimidines (PDP)^{17,18} (Chart 1) are two classes of compounds characterized by the ability to inhibit the 3'-processing reaction in the low micromolar range and they are referred to as integrase binding inhibitors (INBIs).

Within our ongoing efforts in the study of new antiviral agents, ^{19–22} and with the aim of identifying a novel class of IN inhibitors acting at the level of the IN–DNA complex formation, we set up a virtual screening protocol based on the application of different sequential filters which took into account both the structural information coming from known inhibitors of the 3′-processing step and 3D structural data of the enzyme.²³

A database of over 200,000 compounds (Asinex gold collection) was initially screened using the electron–ion interaction potential (EIIP) technique²⁴ leading to the selection of approximately 96,000 compounds. Next, Lipinski's rule-of-five was applied on all retrieved compounds and the molecules that violated this rule were eliminated. Finally, in consideration that most of the known IN inhibitors are characterized by a rigid structure, only compounds having a number of rotatable bond <10 were selected giving rise to a cluster of 40,000 compounds.

Subsequently, a three-dimensional ligand-based pharmacophoric model was generated starting from 30 molecules known to inhibit the 3'-processing step with IC $_{50}$ values <1 μ M. It should be noted that, while several HIV-1 IN pharmacophores have already been reported, $_{25-28}^{25-28}$ based on the structure of strand-transfer selective inhibitors, no pharmacophoric model based on 3'-processing inhibitors has been described so far.

The pharmacophoric model was used as search query on previously selected compounds and the molecules that fitted all the features of the hypothesis (ca. 15,000) were retrieved. Finally, the binding mode of all retrieved compounds was investigated by computational docking using the 3D structure of the enzyme. The docking calculations were performed into the IN core domain, in the region of interaction with the DNA, which has been widely explored by mutational studies^{29–31} and photocross-linking experiments.³² On the basis of the docking scores, 12 compounds were selected and their antiviral activity was evaluated in in vitro assays. Among them, compound 1, characterized by a completely new scaffold (Chart 1), showed an interesting anti-IN activity $(IC_{50} = 164 \mu M)$ and was therefore chosen as a hit compound for further development.

On this basis, we decided to investigate a number of compounds structurally related to 1 with the aim of identifying molecules endowed with a better pharmacological profile (validation of the molecular scaffold) and of exploring their structure—activity relationships. Seven additional compounds (2–8) were chosen on the basis of

a 2D substructure search and were purchased from the ASINEX database, ²³ while 22 novel compounds (9–30) were easily prepared starting from commercially available building blocks.

The synthesis of the new compounds was guided by the following considerations: (i) exploration of different substitution patterns on the phenyl ring with the aim of studying their effect on the activity of the molecule, (ii) substitution of the cyano group with a hydrogen, a methyl or an amide group in order to understand its influence on the molecule toxicity, and (iii) bioisosteric replacement of the benzimidazole moiety with benzoxazole and benzothiazole to test the importance of the H-bond donor NH group of the benzimidazole on the activity of the molecule.

The new compounds could be easily accessed in a twostep sequence consisting of an initial coupling reaction followed by a condensation, starting from the appropriate furan aldehyde derivative (Fig. 1).

In particular, 5-bromo-2-furaldehyde (Scheme 1) was reacted with the appropriate arylboronic acid in the presence of Pd(OAc)₂/PPh₃ as the catalyst and Na₂CO₃ as the base in a PrOH/H₂O mixture.³³

The reaction rate was highly accelerated by the use of microwaves in sealed tube giving the desired compounds in 10–15 min. Alternatively, 2-furaldehyde was coupled, according to the Meerwin arylation procedure, ^{34,35} with the aryldiazonium tetrafluoborate salt of the appropriate aniline, in the presence of copper (II) chloride as the catalyst to give, after 48 h at room temperature, the target aldehyde as a solid after filtration of the reaction mixture.

The condensation step was performed according to two different methodologies on the basis of the final compound to be obtained.

Thus, a Knoevenagel condensation between 2-cyanomethylbenzimidazole (or cyanomethylbenzothiazole/2-cyanomethylbenzoxazole) and the appropriate 5-aryl-2-furaldehyde in the presence of piperidine (or Et₃N) afforded the CN substituted derivatives as colored solids after simple filtration of the reaction mixture. ³⁶ A Wittig reaction was instead used to prepare the unsubstituted derivatives starting from the functionalized aldehyde and the triphenylphosphonium salt of chloromethyl-

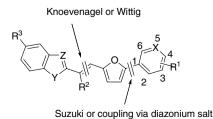


Figure 1. Retrosynthetic analysis.

OHC O Br
$$+ R^{1} \stackrel{X}{\parallel} \times B(OH)_{2}$$
 A OHC O $+ R^{1} \stackrel{X}{\parallel} \times B(OH)_{2}$ B OHC O $+ R^{1} \stackrel{X}{\parallel} \times B(OH)_{2}$ B $+ R^{1} \stackrel{X}{\parallel} \times B(OH)_{2}$

Scheme 1. Reagents and conditions: (A) Pd(OAc)₂, PPh₃, Na₂CO₃, PrOH, H₂O, MW, 100 °C, 10 min, sealed tube; (B) i—NaNO₂, HBF₄, H₂O; ii—CuCl₂, acetone; (C) 2-cyanomethylbenzimidazole, piperidine, EtOH; (D) i—2-chloromethylbenzimidazole, PPh₃, CH₃CN; ii—NaOMe, MeOH; (E) 2-cyanomethylbenzothiazole or 2-cyanomethylbenzoxazole, Et₃N, EtOH; (F) 2-ethylbenzimidazole, AC₂O, reflux.

benzimidazole in the presence of a slight excess of NaOMe.³⁷ In this case E/Z mixtures were obtained consisting almost exclusively in the E isomer: recrystallization afforded the E isomer pure enough for the biological evaluation.

Compounds 16, 20–22, and 24–30 were prepared in a single synthetic step by condensing a commercially available functionalized aldehyde with the appropriate activated methylene compound.

Compound 23 was obtained starting from the corresponding nitrile derivative 20 by treatment with concentrated H_2SO_4 at 60 °C.

The results obtained from the biological evaluation of compounds 1–30 are summarized in Table 1.

Starting from our hit compound 1, the introduction of a chlorine or a hydroxyl group on the 4 position of the phenyl ring gave compounds 4 and 8 approximately two fold more active. Moving the COOH moiety from the meta to the para position led to a completely inactive compound 6; the activity was restored when an OH group was introduced in the meta position (3), thus underlining the importance, in this position, of a group able to interact with the enzyme through hydrogen bond formation.

Good results were also obtained when different electronwithdrawing groups such as Cl, CF₃, and NO₂ groups were introduced on the phenyl ring (2, 22).

The substitution of the CN group with a H on the ethylene bridge proved to be irrelevant for both the activity and the cytotoxicity. In particular, in the series of

Table 1. Integrase inhibitory activity of hit compound 1 and its analogs

1 C NH N 3-COOH CN H — 163.92 ± 94.22 2 C NH N 2-CI, 5-NO₂ CN H — 58.68 ± 2.02 3 C NH N 3-COOH, 4-COOH CN H — 58.68 ± 2.02 3 C NH N 3-COOH, 4-COOH CN H — 90.36 ± 4.26 5 C NH N 2-COOH, 4-CI CN CH₃ — 36.16 ± 31.94 6 C NH N 2-COOH, 4-CI CN H — 298.140 7 C NH N 2-COH, 3-S-COOH CN H — 39.80 ± 24.01 8 C NH N 3-COH, 4-OH CN H — 68.69 ± 11.34 9 C NH N 4-CH3, 5-COOH CN H B + C >289 10 C NH N 4-CH3, 5-CH3, 5-CH3<	Compound	X	Y	Z	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	Method	Overall $IC_{50} \pm SD (\mu M)^a$
3 C NH N 3-OH, 4-COH CN H — 70.28 ± 16.37 4 C NH N 3-COOH, 4-CI CN H — 90.36 ± 4.26 5 C NH N 2-COOH, 4-CI CN H — 90.36 ± 4.26 6 C NH N 2-COOH, 4-CI CN H — 281.40 7 C NH N 2-CH3, 5-COOH CN H — 39.80 ± 24.01 8 C NH N 3-COOH, 4-OH CN H — 68.69 ± 11.34 9 C NH N 3-COOH, 4-OH CN H B + C >289 10 C NH N 4-CH3, 5-CH3 CN H A + C >2271 11 C NH N 2-CH3, 3-NO2 CN H B + C >2285 12 C NH N 2-COOH, 4-F C	1	С	NH	N	3-СООН	CN	Н	_	163.92 ± 94.22
4 C NH N 3-COOH, 4-CI CN H — 90.36 ± 4.26 5 C NH N 2-COOH, 4-CI CN CH ₃ — 36.16 ± 31.94 6 C NH N 4-COOH CN H — >2281.40 7 C NH N 2-CH ₃ , 5-COOH CN H — 68.69 ± 11.34 9 C NH N 3-COOH, 4-OH CN H — 68.69 ± 11.34 9 C NH N 4-CI CN H B + C >289 10 C NH N 4-CH ₃ CCH ₃ CN H A + C >2271 11 C NH N 4-NBoc CN H A + C >2235 12 C NH N 2-CH ₃ , 3-NO ₂ CN H B + C >281 13 C NH N 2-COOH, 4-F	2	C	NH	N	2-Cl, 5-NO ₂	CN	H	_	58.68 ± 2.02
4 C NH N 3-COOH, 4-CI CN H — 90.36 ± 4.26 5 C NH N 2-COOH, 4-CI CN CH3 — 36.16 ± 31.94 6 C NH N 2-COOH, 4-CI CN H — >2281.40 7 C NH N 2-COH3, 5-COOH CN H — 39.80 ± 24.01 8 C NH N 3-COOH, 4-OH CN H — 68.69 ± 11.34 9 C NH N 4-COOH, 4-OH CN H — 68.69 ± 11.34 9 C NH N 4-CH3, 3-COOH, 4-OH CN H A + C >2289 10 C NH N 4-CH3, 3-COOH, 3-COH, 3-CO	3	C	NH	N	3-OH, 4-COOH	CN		_	70.28 ± 16.37
6 C NH N 4-COOH CN H — >281.40 7 C NH N 2-CH3, 5-COOH CN H — 39.80 ± 24.01 8 C NH N 2-CH3, 5-COOH CN H — 68.69 ± 11.34 9 C NH N 4-CH3 CN H — 68.69 ± 11.34 9 C NH N 4-CH3 CN H B + C >289 10 C NH N 4-CH3 CN H A + C >2271 11 C NH N 4-NB0c CN H A + C >225 12 C NH N 2-CH3, 3-NO2 CN H B + C >235 12 C NH N 2-OCH3, 3-NO2 CN H B + C >2281 14 N NH N 2-NO2 H H B +	4	C	NH	N	3-COOH, 4-Cl	CN	H	_	90.36 ± 4.26
7 C NH N 2-CH ₃ , 5-COOH CN H — 39.80 ± 24.01 8 C NH N 3-COOH, 4-OH CN H — 68.69 ± 11.34 9 C NH N 4-CI CN H B + C >289 10 C NH N 4-CH ₃ CN H A + C >289 10 C NH N 4-NHBoc CN H A + C >225 11 C NH N 4-NHBoc CN H A + C >235 12 C NH N 2-CH ₃ , 3-NO ₂ CN H B + C >281 14 N NH N 2-COO ₁ CN H B + C >281 14 N NH N 2-COO ₁ CN H B + C >268 16 C NH N 2-NO ₂ H H	5	C	NH	N	2-COOH, 4-Cl	CN	CH_3	_	36.16 ± 31.94
8 C NH N 3-COOH, 4-OH CN H — 68.69 ± 11.34 9 C NH N 4-CI CN H B + C >289 10 C NH N 3-CH3, 4-OCH3, 5-CH3 CN H A + C >271 11 C NH N 4-NHBoc CN H A + C >235 12 C NH N 2-CH3, 3-NO2 CN H B + C >281 13 C NH N 2-CH3, 3-NO2 CN H B + C >281 14 N NH N 2-NO2 CN H B + C >292 15 C NH N 2-COOH, 4-F CN H B + C >298 16 C NH N 2-NO2 H H B + D >302 18 C NH N 2-CH3, 3-NO2 H H	6	C	NH	N	4-COOH	CN	Н	_	>281.40
9 C NH N 4-Cl CN H B + C >289 10 C NH N 3-CH ₃ , 4-OCH ₃ , 5-CH ₃ CN H A + C >271 11 C NH N 4-NHBoc CN H A + C >235 12 C NH N 2-CH ₃ , 3-NO ₂ CN H B + C >288 12 C NH N 2-CH ₃ , 3-NO ₂ CN H B + C >281 14 N NH N 4-OCH ₃ CN H B + C >292 15 C NH N 2-COOH, 4-F CN H B + C >292 15 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 3-NO ₂ H H B + D >302 17 C NH N 3-NO ₂ H H <td>7</td> <td>C</td> <td>NH</td> <td>N</td> <td>2-CH₃, 5-COOH</td> <td>CN</td> <td>H</td> <td>_</td> <td>39.80 ± 24.01</td>	7	C	NH	N	2-CH ₃ , 5-COOH	CN	H	_	39.80 ± 24.01
10 C NH N 3-CH ₃ , 4-OCH ₃ , 5-CH ₃ CN H A + C >271 11 C NH N 4-NHBoc CN H A + C >235 12 C NH N 2-CH ₃ , 3-NO ₂ CN H B + C >258 13 C NH N 2-NO ₂ CN H B + C >281 14 N NH N 4-OCH ₃ CN H A + C >292 15 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 2-NO ₂ H H D 12.02 ± 0.97 17 C NH N 2-NO ₂ H H B + D >302 18 C NH N 3-CH ₃ , 4-OCH ₃ , 5-CH ₃ H H B + D >291 19 C NH N 2-NO ₂ , 4-Cl H	8	C	NH	N	3-COOH, 4-OH	CN	Н	_	68.69 ± 11.34
11 C NH N 4-NHBoc CN H A + C >235 12 C NH N 2-CH3, 3-NO2 CN H B + C >235 13 C NH N 2-NO2 CN H B + C >281 14 N NH N 4-OCH3 CN H B + C >292 15 C NH N 2-COOH, 4-F CN H B + C >292 16 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 2-NO2 H H D 12.02 ± 0.97 17 C NH N 2-NO2 H H B + D >302 18 C NH N 2-CH3, 3-NO2 H H A + D >291 19 C NH N 2-CH3, 3-NO2 H H B + D	9	C	NH	N	4-Cl	CN	H	B + C	>289
12 C NH N 2-CH ₃ , 3-NO ₂ CN H B + C 85.84 ± 24.51 13 C NH N 2-NO ₂ CN H B + C >281 14 N NH N 4-OCH ₃ CN H B + C >292 15 C NH N 2-COOH, 4-F CN H B + C >292 16 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 2-COOH, 4-F CN H B + C >268 17 C NH N 2-COOH, 4-F CN H H B + D >302 18 C NH N 2-CH ₃ , 5-CH ₃ H H A + D >291 19 C NH N 2-CH ₃ , 3-NO ₂	10	C	NH	N	3-CH ₃ , 4-OCH ₃ , 5-CH ₃	CN	H	A + C	>271
13 C NH N 2-NO2 CN H B + C >281 14 N NH N 4-OCH3 CN H A + C >292 15 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 2-NO2 H H D 12.02 ± 0.97 17 C NH N 2-NO2 H H B + D >302 18 C NH N 2-NO2 H H A + D >291 19 C NH N 2-CH3, 3-NO2 H H B + D >290 20 C NH N 2-NO2, 4-CI H H D <	11	C	NH	N	4-NHBoc	CN	Н	A + C	>235
14 N NH N 4-OCH ₃ CN H A + C >292 15 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 3-NO ₂ H H D 12.02 ± 0.97 17 C NH N 2-NO ₂ H H B + D >302 18 C NH N 2-NO ₂ H H A + D >291 19 C NH N 2-CH ₃ , 3-NO ₂ H H B + D >290 20 C NH N 2-NO ₂ , 4-Cl H H D >273 21 C NH N 3-NO ₂ CN H C >281 22 C NH N 2-NO ₂ , 4-Cl CONH ₂ H - >244 23 C NH N 2-NO ₂ , 4-Cl CH ₃ H F >263 24 C NH N 2-NO ₂ , 4-Cl CN	12	C	NH	N	2-CH ₃ , 3-NO ₂	CN	H	B + C	85.84 ± 24.51
15 C NH N 2-COOH, 4-F CN H B + C >268 16 C NH N 3-NO2 H H D 12.02 ± 0.97 17 C NH N 2-NO2 H H B + D >302 18 C NH N 3-CH ₃ , 4-OCH ₃ , 5-CH ₃ H H A + D >291 19 C NH N 2-CH ₃ , 3-NO ₂ H H B + D >290 20 C NH N 2-NO ₂ , 4-Cl H H D >273 21 C NH N 3-NO ₂ CN H C >281 22 C NH N 2-CI, 5-CF ₃ CN H C 31.32 ± 22.47 23 C NH N 2-NO ₂ , 4-Cl CONH ₂ H — >244 24 C NH N 2-CF ₃ , 6-Cl H <t< td=""><td>13</td><td>C</td><td>NH</td><td>N</td><td>$2-NO_2$</td><td>CN</td><td>Н</td><td>B + C</td><td>>281</td></t<>	13	C	NH	N	$2-NO_2$	CN	Н	B + C	>281
16 C NH N 3-NO2 H H D 12.02 ± 0.97 17 C NH N 2-NO2 H H B + D >302 18 C NH N 3-CH3, 4-OCH3, 5-CH3 H H A + D >291 19 C NH N 2-CH3, 3-NO2 H H B + D >290 20 C NH N 2-NO2, 4-Cl H H D >273 21 C NH N 3-NO2 CN H C >281 22 C NH N 2-CF,5-CF3 CN H C 31.32 ± 22.47 23 C NH N 2-NO2, 4-Cl CONH2 H — >244 24 C NH N 2-NO2, 4-Cl CH3 H F >263 25 C NH N 2-CF3, 6-Cl CN H E <td>14</td> <td>N</td> <td>NH</td> <td>N</td> <td>4-OCH₃</td> <td>CN</td> <td>Н</td> <td>A + C</td> <td>>292</td>	14	N	NH	N	4-OCH ₃	CN	Н	A + C	>292
17 C NH N 2-NO2 H H H B + D >302 18 C NH N 3-CH3, 4-OCH3, 5-CH3 H H A + D >291 19 C NH N 2-CH3, 3-NO2 H H B + D >290 20 C NH N 2-NO2, 4-Cl H H D >273 21 C NH N 3-NO2 CN H C >281 22 C NH N 2-CI, 5-CF3 CN H C >281 23 C NH N 2-NO2, 4-Cl CONH2 H — >244 24 C NH N 2-NO2, 4-Cl CH3 H F >263 25 C NH N 2-CF3, 6-Cl H H D >257 26 C S N 2-NO2, 4-Cl CN H E >232 27 C S N 2-NO2, 4-Cl CN	15	C	NH	N	2-COOH, 4-F	CN	Н	B + C	>268
18 C NH N 3-CH ₃ , 4-OCH ₃ , 5-CH ₃ H H A + D >291 19 C NH N 2-CH ₃ , 3-NO ₂ H H B + D >290 20 C NH N 2-NO ₂ , 4-Cl H H D >273 21 C NH N 3-NO ₂ CN H C >281 22 C NH N 2-CF ₃ CN H C >281 23 C NH N 2-NO ₂ , 4-Cl CONH ₂ H — >244 24 C NH N 2-NO ₂ , 4-Cl CH ₃ H F >263 25 C NH N 2-CF ₃ , 6-Cl H H D >257 26 C S N 2-NO ₂ , 4-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H	16	C	NH	N	$3-NO_2$	Н	Н	D	12.02 ± 0.97
19 C NH N 2-CH ₃ , 3-NO ₂ H H B + D >290 20 C NH N 2-NO ₂ , 4-Cl H H D >273 21 C NH N 3-NO ₂ CN H C >281 22 C NH N 2-CI, 5-CF ₃ CN H C 31.32 ± 22.47 23 C NH N 2-NO ₂ , 4-Cl CONH ₂ H — >244 24 C NH N 2-NO ₂ , 4-Cl CH ₃ H F >263 25 C NH N 2-CF ₃ , 6-Cl H H D >257 26 C S N 2-NO ₂ , 4-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H E >245 28 C S N 3-NO ₂ CN H E >245 29 C O N 2-CF ₃ , 6-Cl CN	17	C	NH	N	$2-NO_2$	Н	H	B + D	>302
20 C NH N 2-NO ₂ , 4-Cl H H D >273 21 C NH N 3-NO ₂ CN H C >281 22 C NH N 2-Cl, 5-CF ₃ CN H C 31.32 ± 22.47 23 C NH N 2-NO ₂ , 4-Cl CONH ₂ H — >244 24 C NH N 2-NO ₂ , 4-Cl CH ₃ H F >263 25 C NH N 2-CF ₃ , 6-Cl H H D >257 26 C S N 2-CF ₃ , 6-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H E >245 28 C S N 3-NO ₂ CN H E >245 29 C O N 2-CF ₃ , 6-Cl CN H E <td>18</td> <td>C</td> <td>NH</td> <td>N</td> <td>3-CH₃, 4-OCH₃, 5-CH₃</td> <td>Н</td> <td>Н</td> <td>A + D</td> <td>>291</td>	18	C	NH	N	3-CH ₃ , 4-OCH ₃ , 5-CH ₃	Н	Н	A + D	>291
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	C	NH	N	2-CH ₃ , 3-NO ₂	Н	H	B + D	>290
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	C	NH	N	2-NO ₂ , 4-Cl	Н	Н	D	>273
23 C NH N 2-NO ₂ , 4-Cl CONH ₂ H — >244 24 C NH N 2-NO ₂ , 4-Cl CH ₃ H F >263 25 C NH N 2-CF ₃ , 6-Cl H H D >257 26 C S N 2-CF ₃ , 6-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H E >245 28 C S N 3-NO ₂ CN H E >268 29 C O N 2-CF ₃ , 6-Cl CN H E >241	21	C	NH	N	$3-NO_2$	CN	Н	C	>281
24 C NH N 2-NO ₂ , 4-Cl CH ₃ H F >263 25 C NH N 2-CF ₃ , 6-Cl H H D >257 26 C S N 2-CF ₃ , 6-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H E >245 28 C S N 3-NO ₂ CN H E >268 29 C O N 2-CF ₃ , 6-Cl CN H E >241	22	C	NH	N	2-Cl, 5-CF ₃	CN	Н	C	31.32 ± 22.47
24 C NH N 2-NO ₂ , 4-Cl CH ₃ H F >263 25 C NH N 2-CF ₃ , 6-Cl H H D >257 26 C S N 2-CF ₃ , 6-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H E >245 28 C S N 3-NO ₂ CN H E >268 29 C O N 2-CF ₃ , 6-Cl CN H E >241	23	C	NH	N	2-NO ₂ , 4-Cl	$CONH_2$	Н	_	>244
25 C NH N 2-CF ₃ , 6-Cl H H D >257 26 C S N 2-CF ₃ , 6-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H E >245 28 C S N 3-NO ₂ CN H E >268 29 C O N 2-CF ₃ , 6-Cl CN H E >241	24	C	NH	N		CH_3	H	F	>263
26 C S N 2-CF ₃ , 6-Cl CN H E >232 27 C S N 2-NO ₂ , 4-Cl CN H E >245 28 C S N 3-NO ₂ CN H E >268 29 C O N 2-CF ₃ , 6-Cl CN H E >241	25	C	NH	N	2-CF ₃ , 6-Cl		Н	D	>257
28 C S N 3-NO ₂ CN H E >268 29 C O N 2-CF ₃ , 6-Cl CN H E >241	26	C	S	N		CN	Н	E	>232
29 C O N 2-CF ₃ , 6-Cl CN H E >241	27	\mathbf{C}	S	N	2-NO ₂ , 4-Cl	CN	Н	E	>245
3/	28	C	S	N	$3-NO_2$	CN	Н	E	>268
		C	O	N					
		C	O	N	$3-NO_2$	CN			>280

^a Values are means of three experiments. Integrase inhibition was determined in overall integration assay, assaying both 3' processing and strand-transfer activities in the presence of Mg²⁺²³.

unsubstituted derivatives, the only compound endowed with interesting anti-IN activity (and also the best compound among those tested) was 16 (IC $_{50}$ = 12 μ M) characterized by the presence of a nitro group in the meta position of the phenyl ring. Going from benzimidazole (1–25) to benzothiazole (26–28) and benzoxazole (29–30) the inhibitory activity is completely lost thus underlying the importance of the NH of benzimidazole in the interaction with the enzyme.

All compounds were evaluated for their anti-HIV activity using MT-4/MTT experiments. None of the compounds was able to inhibit HIV replication at subtoxic concentrations.

In conclusion, a novel hit compound has been identified as IN inhibitor by means of virtual screening techniques. Starting from it, a library of structurally related compounds has been rapidly generated and submitted to biological evaluation with the aim of identifying potential INBI endowed with positive pharmacological profile. Among all the tested compounds, **16** proved to be the most interesting one, with an $IC_{50} = 12 \mu M$.

Further studies on this new family of IN inhibitors are ongoing in our laboratories.

Acknowledgments

This study was supported by grants from the European TRIOH Consortium (LSHB-2003-503480). We thank Asinex for a partial support to the work. We acknowledge Linda Desender and Martine Michiels for excellent technical assistance.

References and notes

- Meadows, D. C.; Gervay-Hague, J. Chem. Med. Chem. 2006, 1, 16.
- 2. De Clercq, E. J. Med. Chem. 2005, 48, 1297.
- Yin, P. D.; Das, D.; Mitsuya, H. Cell. Mol. Life Sci. 2006, 63, 1706.
- 4. Imamichi, T. Curr. Pharm. Des. 2004, 10, 4039.
- 5. Palmisano, L. Expert Rev. Anti-Infect. Ther. 2007, 5, 67.
- Gordon, C. P.; Griffith, R.; Keller, P. A. Med. Chem. 2007, 3, 199.
- Witvrouw, M.; Fikkert, V.; Vercammen, J.; Van Maele, B.; Engelborghs, Y.; Debyser, Z. Curr. Med. Chem.: Anti-Infect. Agents 2005, 4, 153.
- Hazuda, D. J.; Felock, P.; Witmer, M.; Wolfe, A.; Stillmock, K.; Grobler, J. A.; Espeset, A.; Gabryelski, L.; Schleif, W.; Blau, C.; Miller, M. D. Science 2000, 287, 646.
- Young, S. D. Curr. Opin. Drug Discovery Dev. 2001, 4, 402.
- 10. Craigie, R. J. Biol. Chem. 2001, 276, 23213.
- 11. Cotelle, P. Recent Pat. Anti-Infect. Drug Discovery 2006, 1, 1.
- 12. Yoshinaga, T. S.; Fujishita, T.; Fujiwara, T. Presented at the 9th Conference on Retroviruses and Opportunistic Infections, Seattle, WA, February 2002; Abstract 8.

- 13. Young, Presented at the XIV International AIDS Conference, West Point, PA, July 2002.
- Grobler, J. A.; Stilmock, K.; Hu, B.; Witmer, M.; Felock, P.; Espeseth, A. S.; Wolfe, A.; Egbertson, M.; Bourgeois, M.; Melamed, J.; Wai, J. S.; Young, S.; Vacca, J.; Hazuda, D. J. PNAS 2002, 99, 6661.
- Deprez, E.; Barbe, S.; Kolaski, M.; Leh, H.; Zouhiri, F.; Auclair, C.; Brochon, J. C.; Le Bret, M.; Mouscadet, J.-F. Mol. Pharmacol. 2004, 65, 85.
- Zouhiri, F.; Mouscadet, J.-F.; Mekouar, K.; Desmaële,
 D.; Savouré, D.; Leh, H.; Subra, F.; Le Bret, M.;
 Auclair, C.; D'Angelo, J. J. Med. Chem. 2000, 43,
 1533.
- 17. Pannecouque, C.; Pluymers, W.; Van Maele, B.; Tetz, V.; Cherepanov, P.; De Clercq, E.; Witvrouw, M.; Debyser, Z. *Curr. Biol.* **2002**, *12*, 1169.
- Witvrouw, M.; Van Maele, B.; Vercammen, J.; Hantson, A.; Engelborghs, Y.; De Clercq, E.; Pannecouque, C.; Debyser, Z. Curr. Drug Metab. 2004, 5, 291.
- Mugnaini, C.; Manetti, F.; Esté, J. A.; Clotet-Codina, I.; Maga, G.; Cancio, R.; Botta, M.; Corelli, F. *Bioorg. Med. Chem.* 2006, 16, 3541.
- Manetti, F.; Esté, J. A.; Clotet-Codina, I.; Armand-Ugon, M.; Maga, G.; Crespan, E.; Cancio, R.; Mugnaini, C.; Bernardini, C.; Togninelli, A.; Carmi, C.; Alongi, M.; Petricci, E.; Massa, S.; Corelli, F.; Botta, M. J. Med. Chem. 2005, 48, 8000.
- Armand-Ugon, M.; Clotet-Codina, I.; Tintori, C.; Manetti, F.; Clotet, B.; Botta, M.; Esté, J. A. Virology 2005, 343, 141.
- 22. Mugnaini, C.; Petricci, E.; Corelli, F.; Botta, M. Comb. Chem. High Throughput Screening 2005, 8, 387.
- Tintori, C.; Manetti, F.; Veljkovic, N.; Perovic, V.; Vercammen, J.; Hayes, S.; Massa, S.; Witvrouw, M.; Debyser, Z.; Veljkovic, V.; Botta, M. J. Chem. Inf. Mod. 2007, 47, 1536.
- 24. Veljkovic, V.; Lalovic, D. Cancer Biochem. Biophys. 1976, 1, 295.
- Barreca, M. L.; Ferro, S.; Rao, A.; De Luca, L.; Zappala, M.; Monforte, A. M.; Debyser, Z.; Witvrouw, M.; Chimirri, A. J. Med. Chem. 2005, 48, 7084.
- Hong, H.; Neamati, N.; Winslow, H. E.; Christensen, J. L.; Orr, A.; Pommier, Y.; Milne, G. W. Antiviral Chem. Chemother. 1998, 9, 461.
- Carlson, H. A.; Masukawa, K. M.; Rubins, K.; Bushman,
 F. D.; Jorgensen, W. L.; Lins, R. D.; Briggs, J. M.;
 McCammon, J. A. J. Med. Chem. 2000, 43, 2100.
- 28. Mustata, G. I.; Brigo, A.; Briggs, J. M. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 1447.
- 29. Engelman, A.; Craige, R. J. Virol. 1992, 66, 6361.
- Leavitt, A. D.; Shiue, L.; Varmus, H. E. J. Biol. Chem. 1993, 268, 2113.
- Gerton, J. L.; Ohgi, S.; Olsen, M.; Derisi, J.; Brown, P. O. J. Virol. 1998, 6, 5046.
- 32. Heuer, T. S.; Brown, P. O. Biochemistry 1997, 36, 10655.
- 33. Huff, B. E.; Koenig, T. M.; Mitchell, D.; Staszak M. A. In *Organic Syntheses*, 3rd ed.; Smith, A. B., Eds.; Organic Synthesis; 1997; Vol. 75, pp 53–59.
- 34. Malinowski, S. Polish J. Chem. 1953, 27, 54.
- 35. Tralić-Kulenović, V.; Fišer-Jakić, L.; Lazarević, Z. Monatsh. Chem 1994, 125, 209.
- Ganushchak, N. I.; Lesyuk, A. I.; Federovich, I. S.; Obushak, N. D.; Andrushko, V. N. Russ. J. Org. Chem. 2003, 39, 1295.
- Prousek, J. Collect. Czech. Chem. Commun. 1991, 56, 1358